Connected, Autonomous, Shared, and Electric Vehicles

Northern Virginia Transportation Authority

VIRGINIA TECH TRANSPORTATION INSTITUTE Advancing Transportation through Innovation

March 13, 2019

Andy Schaudt, M.S., M.B.A. Project Director, Automated Vehicle Systems, VTTI Project Director, Motorcycle Research Group, VTTI Adjunct Faculty, Pamplin College of Business, VT

What is "Driving" the Interest in CASE Vehicles?

Collectively, these advanced vehicles have the potential to positively disrupt the transportation community by:

- Improving safety
- Mitigating traffic congestion
- Increasing mobility
- Potentially offsetting negative environmental effects

2

Opportunities for Innovation Begin With:

Relying on car transport is not always convenient. Having my own bike is nice, but also has limitations. I need something else??

> Solve a **Problem?**

Lack of convenient, accessible, efficient movement from A to B (Smart Micro Mobility)

Marketplace?

Electrification; Connectivity; Green Leverage any

VIRGINIA TECH

Trends?

Barringer & Ireland 6 ed. "Entrepreneurship: Successfully Launching New Ventures"

Solving Problem(s) for Citizens = Yes

Solving Problem(s) for Municipalities = ?

Is It Even Possible To Solve All Transportation Problems In Northern Virginia?

A Complex System

Definition by professor George Rzevski :

- 1. **INTERACTION** A complex system consists of a large number of diverse components (Agents) engaged in rich interaction
- AUTONOMY Agents are largely autonomous but subject to certain laws, rules or norms; there is no central control but agent behaviour is not random
- 3. **EMERGENCE** Global behaviour of a complex system "emerges" from the interaction of agents and is therefore unpredictable
- FAR FROM EQUILIBRIUM Complex systems are "far from equilibrium" because frequent occurrences of disruptive events do not allow the system to return to the equilibrium
- NONLINEARITY Nonlinearity occasionally causes an insignificant input to be amplified into an extreme event (butterfly effect)
- SELF-ORGANISATION Complex systems are capable of selforganisation in response to disruptive events
- CO-EVOLUTION Complex systems irreversibly co-evolve with their environments

Retrieved from: https://www.slideshare.net/andreheijstek/cynefin

Challenges:

- To focus on leveraging and sharing data correctly (Smart Data), not just collecting a lot of data (Big Data) without purpose
- As a municipality, do we:
 - Develop solutions ourselves?
 - Contract others to provide their services?
 - Let industry supply for the demand organically?
- How do we do all of this while 1) avoiding unintended consequences, and 2) make the experience for citizens elegant and seamless to citizens?

Overall Challenge: <u>Creating/Supporting an Ecosystem</u> <u>that Allows for Integrated Innovative Solutions</u>

Andy Schaudt Center for Automated Vehicle Systems aschaudt@vtti.vt.edu 540-231-6198

